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Abstract Ash rich clouds, produced by explosive volcanic eruptions, are a major hazard to aviation.
Unfortunately, explosive volcanic eruptions are not always detected in a timely manner in satellite data.
The large optical depth of emergent volcanic clouds greatly limits the effectiveness of multispectral
infrared-based techniques for distinguishing between volcanic and nonvolcanic clouds. Shortwave
radiation-based techniques require sufficient sunlight and large amounts of volcanic ash, relative to
hydrometeors, to be effective. Given these fundamental limitations, a new automated technique for
detecting emergent clouds, produced by explosive volcanic eruptions, has been developed. The Cloud
Growth Anomaly (CGA) technique utilizes geostationary satellite data to identify cloud objects, near
volcanoes, that are growing rapidly in the vertical relative to clouds that formed through meteorological
processes. Explosive volcanic events are shown to frequently be a source of rapidly developing clouds that, at
a minimum, reach the upper troposphere. As such, the CGA algorithm is effective at determining when a
recently formed cloud is possibly the result of an explosive eruptive event. While the CGA technique can be
applied to any geostationary satellite sensor, it is most effective when applied to latest generation of
meteorological satellites, which provide more frequent images with improved spatial resolution. Using a
large collection of geographically diverse explosive eruptions, and several geostationary satellites, the CGA
technique is described and demonstrated. A CGA-based eruption alerting tool, which is designed to improve
the timeliness of volcanic ash advisories, is also described.

1. Introduction

Ash-rich clouds produced by explosive volcanic eruptions are a major hazard to aviation. Flying in volcanic
ash-contaminated air can cause severe damage to jet engines and airframes and, in the worst case, cause
in-flight engine failure (Casadevall, 1994; Clarkson et al., 2016; Guffanti et al., 2010; Miller & Casadevall,
2000). As documented by Guffanti et al. (2010), the most severe (damaging) encounters with volcanic ash
have generally occurred within 1,000 km of the source volcano in the early stages of volcanic constituent
transport and dispersal in the atmosphere. In addition, volcanic clouds produced by explosive eruptions
can reach jet aircraft cruising altitudes in as little as 5 min and 10 or more eruptions per year will generate
volcanic clouds with tops at or above jet cruising altitudes (International Civil Aviation Organization, 2007).
Thus, timely and accurate detection of explosive volcanic activity is critical for aviation safety.

Unfortunately, explosive volcanic eruptions are not always detected in a timely manner, especially at
unmonitored volcanoes. Approximately 90% of the world’s volcanoes are not regularly monitored for activity
(Ph. Bally Ed, 2012). For instance, when Nabro volcano in Eritrea erupted for the first time in recorded history
on 12 June 2011 (Global Volcanism Program, 2011), the eruption went undetected by authorities for several
hours because it occurred at a remote, unmonitored, volcano with no past history (Wiart & Oppenheimer,
2005) and the resulting cloud was difficult to distinguish from meteorological clouds in satellite imagery.

Volcanic Ash Advisory Centers (VAACs) are responsible for issuing volcanic ash advisories for aviation. While
VAAC forecasters utilize an array of tools to detect new ash emissions and track existing ash clouds,
meteorological satellites are the primary tools utilized by VAACs (e.g., Prata, 2009; Tupper et al., 2004).
Geostationary satellites, in particular, are most often used to detect explosive volcanic eruptions. Volcanic
clouds formed as a result of explosive volcanism evolve rapidly in time, so the frequent images provided
by geostationary satellites are essential for capturing the early stages of an eruption. Geostationary satellites
such as Himawari-8 (launched in 2014; Bessho et al., 2016) and the next generation Geostationary
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Operational Environmental Satellite (GOES-R; Schmit et al., 2017) provide much more frequent imagery, with
4 times the spatial resolution, compared to the previous generation of satellites. The imaging radiometers on
the Himawari-8 and GOES-R satellites also havemore spectral channels than the previous generation. Despite
the improved spectral, spatial, and temporal capabilities of geostationary satellites such as Himawari-8, timely
volcanic eruption detection remains a challenge.

The large optical depth of emergent volcanic clouds greatly limits the effectiveness of multispectral infrared-
based techniques for detecting volcanic ash from satellites (Pavolonis et al., 2006, 2015b; Prata et al., 2001;
Simpson et al., 2000; Tupper et al., 2004). When sufficient sunlight is present and volcanic ash is not encased
in ice, ultraviolet (Seftor et al., 1997) and visible (Pavolonis et al., 2006) radiation-based techniques are some-
times useful for detecting ash in clouds that are opaque to infrared radiation, but such techniques cannot be
relied on for all eruptions. Thus, VAAC forecasters often utilize manual analysis of time sequences of satellite
imagery to extract features that exhibit volcanic cloud like attributes such as sudden cloud development,
over a volcano, which is out of sync with the surrounding meteorology (Tupper et al., 2007). While the human
expert analysis techniques are effective, there are two important limitations.

1. Explosive volcanic eruptions can be difficult to manually distinguish from meteorological clouds in con-
vectively active environments, especially early in the evolution.

2. From a practical standpoint, it is difficult to carefully manually analyze all satellite images over all
volcanoes in near real time. The data volume issue is becoming more pronounced as next generation
geostationary satellites, such as Himawari-8, produce approximately 100 times more data each day than
the previous generation of geostationary satellites.

Given the limitations above, the goal of this manuscript is to introduce a new automated technique that
utilizes infrared-based cloud vertical growth rates (e.g., trends in metrics related to cloud top temperature)
to detect explosive volcanic eruptions. The cloud growth-based methodology, referred to as the Cloud
Growth Anomaly (CGA) technique, can be applied to any geostationary satellite (day and night) but is
particularly valuable when applied to next generation satellites such as Himawari-8 and GOES-R. The CGA
technique utilizes infrared measurements to identify cloud objects and compute cloud vertical growth rates
from two successive images. As will be shown, growth rates, associated with a large collection of volcanic
eruptions, are nearly always statistically distinguishable from meteorological cloud growth rates. In the
remainder of this paper, the cloud object identification and tracking technique will be described. In addition,
the vertical growth rates associated with 79 explosive volcanic events, from around the world, are compared
to a very large collection of meteorological clouds imaged by several geostationary satellites with widely
varying spatial, spectral, and temporal capabilities. Near-real-time applications of the CGA technique, such
as volcanic eruption alerting and mass eruption rate determination, will also be discussed.

2. Cloud Object Identification

A recursive procedure was developed to extract cloud objects from infrared satellite imagery in amanner that
is reasonably consistent with human expert identification of localized cloud elements. As in Cintineo et al.
(2013, 2014), cloud objects are extracted from the 11-μm top of troposphere cloud emissivity parameter (εtot)
first introduced by Pavolonis (2010). The εtot is simply the 11-μm effective cloud emissivity a cloud would
have if the radiative center were located at the top of the troposphere. Every meteorological satellite in
geostationary orbit (past, present, and future) has an imaging radiometer with a spectral channel centered
near 11 μm, so the cloud object identification and tracking methodology introduced in this manuscript
can be applied to any geostationary satellite. Unlike the 11-μm brightness temperature (BT), εtot is
constrained to range between 0.0 and 1.0, where confidence that a cloud is present greatly increases as εtot
increases. Examples of the εtot parameter and the corresponding false color ash/dust image (Lensky &
Rosenfeld, 2008; Pavolonis et al., 2015a) and the 11-μm brightness temperature image are shown in
Figure 1. The first column in Figure 1 is derived from a Spinning Enhanced Visible and InfraRed Imager
(SEVIRI) image taken at 20:30 UTC on 12 June 2011, and the second column was derived from the next
SEVIRI image at 20:45 UTC. Note in Figure 1 (bottom row) how regions of localized maxima in the εtot image
can be readily identified and correspond to localized minima in the 11-μm BT image. The goal of the cloud
object identification procedure is to automate the extraction of cloud object features that correspond to
regions of localized maxima (minima) in the εtot (11-μm BT) image, consistent with the visual appearance
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of an opaque, near-source, volcanic cloud in infrared satellite imagery (e.g., Schneider & Rose, 1994; Tupper &
Kinoshita, 2003).

Using the samemethodology as Wielicki andWelch (1986) and Pavolonis et al. (2015b), an initial set of parent
cloud objects is constructed using all pixels where εtot is greater than or equal to 0.05. Each parent cloud
object is recursively decomposed into smaller objects by incrementally increasing the εtot threshold for

Figure 1. (first row) SEVIRI false color imagery, (second row) 11-μmbrightness temperature (BT), and (third row) 11-μm top of troposphere emissivity (εtot) are shown
for two consecutive image times. The first column is from the 20:30 UTC Meteosat-9 (MSG-2) SEVIRI scan on 12 June 2011. The second column is from the 20:45 UTC
Meteosat-9 SEVIRI scan on 12 June 2011. The perimeter of automatically defined cloud objects is overlaid on each image in black.
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object membership (objects are constructed from pixels with εtot ≥ the threshold value) until the use of larger
εtot threshold values no longer results in more than one object. The εtot cloud object membership threshold
values utilized in sequential order are 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.75, 0.80, 0.85, and 0.90. As
Figure 1 shows, the cloud object identification algorithm is able to capture regions of localized maxima in εtot
in a manner that is generally consistent with human pattern recognition. In particular, the boundaries of the
emergent Nabro cloud from the 12 June 2011 eruption (Global Volcanism Program, 2011) are consistent with
the infrared satellite imagery. As will be shown using additional examples, the recursive cloud object
identification methodology is able to routinely determine the boundaries of emergent volcanic clouds in a
manner that is consistent with human interpretation of satellite imagery.

3. Cloud Object Tracking

In order to determine if an existing cloud object has undergone vertical growth or if a new object has
emerged from the background, cloud objects must be tracked from one observation time to the next.
More specifically, a new tracking algorithm is used to compute object centric trends in the εtot and the
11-μmBT from two consecutive images (from the same geostationary sensor) taken at times t1 and t2. In
tandem with the cloud object identification technique described in the previous section, the cloud object
tracking algorithm presented in this paper was specifically designed to aid in the detection of rapidly
developing cloud elements in infrared satellite imagery. The object tracking methodology is not meant to
be a general feature tracking solution. Attempts to utilize an existing (and available) object identification
and tracking algorithm (Lakshmanan et al., 2007, 2009) were unsuccessful as the methodologies utilized in
the Warning Decision Support System-Integrated Information were unable to extract objects in a manner
that consistently identified localized cloud elements within midlevel and high-level overcast backgrounds,
while being sufficiently computationally efficient for real-time applications.

Object tracking logistics are simplified if done in image coordinates (x, y pixel indices). Given the variety of
geostationary satellite scan strategies that are possible, data from a given geostationary satellite are mapped
to a constant satellite projection in order to utilize a constant image coordinate system. Information on map
projections for geostationary satellite data can be found at http://www.cgms-info.org/documents/cgms-lrit-
hrit-global-specification-%28v2-8-of-30-oct-2013%29.pdf. For a given object, at time t2, the cloud object
tracking algorithm consists of five major components:

1. Define a search box and gather object properties.
2. Compute the tracking metrics.
3. Determine the best match-up option.
4. Apply quality control procedure.
5. Compute vertical growth trends and anomalies.

For the object of interest, at time t2, there are three possible outcomes of the tracking procedure: (1) The
object is discarded due to lack of possible vertical growth and/or lack of proximity to a volcano, (2) matching
object(s) at time t1 is(are) identified, or (3) the object is classified as a new feature (e.g., determined not to be
present in the t1 image). Each of the five major components of the tracking algorithm is described in the
subsequent sections.

3.1. Search Box and Object Properties

In order to efficiently determine if a given object at time t2 (hereafter referred to as the object of interest) is
present in the t1 image, a search box is defined in image coordinates. The size of the search box is a function
of the difference between the two observation times, the horizontal resolution of the satellite data, and the
attributes of the object of interest. A more detailed description of the search box can be found in Appendix A.
The same search box, defined by a range of x and y pixel indices, is applied to both image times, and relevant
properties of all objects, which are at least partially located in the search box, are gathered. For each of the
two images, a list of objects within the search box is constructed. Each entry in the list contains the object
ID, maximum value of εtot, object area, and x, y centroids. The t1 and t2 lists are then utilized to construct
various metrics for attempting to match the object of interest with an object or objects in the first image.
However, prior to proceeding further, the algorithm first determines if the object of interest is worth tracking.
For efficiency purposes, the object of interest is discarded if any of the following conditions are met: (1) all
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pixels are more than 200 km from the closest volcano, (2) if the maximum εtot in the object of interest is smal-
ler than themaximum value within the first image using the same pixels associated with the object of interest
(emergent volcanic clouds should exhibit growth over an approximately fixed location), or (3) the object is
likely part of a thin cirrus cloud (see Appendix B).

3.2. Object Tracking Metrics

If the object of interest, in the t2 image, was deemed worthy of tracking, a cost function-based object tracking
procedure is applied. Within the search box, four tracking metrics are used to compute a cost function for
each possible interimage (t1 and t2) object pair. For example, the ith t1 object will be paired with each
individual t2 object (t2 objects are denoted by j). This procedure is repeated for all t1 objects in the search
box to form a 2-D matrix of cost function values. The cost function formulation for a single interimage object
pair, Ci,j, is shown in equation (1).

Ci;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c1ð Þ2 þ c22 þ c32 þ c42

q
(1)

Smaller values of Ci,j are indicative of a higher-quality interimage object match. In equation (1), c1, c2, c3, and
c4 represent the four tracking metrics for a given interimage object pair i, j. The first two tracking metrics are
related to object position, and the last two are related to physical properties. A combination of geometric and
physical metrics is needed to ensure quality tracking for fast-moving and/or rapidly changing objects. The
first tracking metric (equation (2)), denoted by c1, is the fraction of pixels, in the smaller of the two objects
comprising the pair (i, j) that spatially overlap (pixel counts are denoted by N). Depending on the object size
and speed, spatial overlap can be strongly indicative of image-to-image coherence for a particular feature.
However, the object tracking methodology does not require spatial overlap, nor is spatial overlap weighted
any higher than the other metrics. Thus, spatial overlap does not automatically result in a valid object match.

c1 ¼ Noverlap;i;j

min Ni;Nj
� � (2)

The second positional tracking metric (c2) is the normalized distance between the centroids (given by xcent
and ycent) of the object pair, where the minimum possible value of 0.0 indicates that the interimage object
pair is the closest centroid-to-centroid distance possible given all of the possible object pairings in the search
box (equation (3)). The normalized distances are computed using the Euclidean formulation (equation (4)).

c2 ¼ di;j � dmin

dmax
(3)

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xcent;i � xcent;j
� �2 þ ycent;i � ycent;j

� �2
r

(4)

The tracking metrics denoted as c3 and c4 are shown in equations (5) and (6), respectively. Metrics 3 and 4 are
aimed at quantifying the relative difference in the maximum εtot and total area (A) of each object for a given
interimage object pair (i, j). As equation (5) shows, the difference between the maximum εtot of the t2 object
(εtot_max,j) and the maximum εtot of the t1 object (εtot_max,i) is normalized by whichever is larger. The relative
difference in area is computed in an analogous manner (equation (6)). Even though the end goal is to identify
rapidly developing clouds, these metrics help constrain the object tracking through influence on interimage
object pairs that do have fairly similar properties at t1 and t2. This concept will be elaborated on in the
next section.

c3 ¼ εtot max;j � εtot max;i

max εtot max;i; εtot max;j
� � (5)

c4 ¼ Aj � Ai

max Ai;Aj
� � (6)

Ideally, the cloud object tracking would consist of matching a single t2 object with a single t1 object.
Unfortunately, that is not always the case as cloud objects frequently split and merge. For efficiency
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purposes, the tracking algorithm restricts splits to t1 objects that have a εtot_max > 0.20 and A > 200 km2 or
εtot_max > 0.30 and A > 100 km2 (the same criteria are applied to the t2 image to similarly restrict merges). A
split is defined as a single t1 object that is associated with two or more t2 objects. Splitting is accounted for in
a given cost function entry, Ci,j, when the ith t1 object has an area that is at least twice as large as the jth t2
object, 0.5εtot_max,i < εtot_max,j < 1.5εtot_max,i (hereafter referred to as the εtot_max split criterion), and the
rectangles formed from the minimum and maximum x/y image coordinates of the interobject pair overlap
(hereafter referred to as the rectangle criterion). If the splitting criteria are met, all t2 objects that are possibly
associated with the split are aggregated when constructing the Ci.j cost function entry. The following criteria
are used to determine which t2 objects to aggregate: the t2 object has an area less than the ith t1 object, and
the t2 object satisfies the εtot_max split and rectangle criteria.

A merge is defined as multiple t1 objects that are associated with a single t2 object. Merging is accounted for
in a given cost function entry, Ci,j, when the jth t2 object has an area that is at least twice as large as the ith t1
object, 0.5εtot_max,j < εtot_max,i < 1.5εtot_max,j (hereafter referred to as the εtot_max merge criterion), and the
rectangle criterion is satisfied. If the merging criteria are met, all t1 objects that are possibly associated with
the merge are aggregated when constructing the Ci.j cost function entry. The following criteria are used to
determine which t1 objects to aggregate: the t1 object has an area less than the jth t2 object, and the t1 object
satisfies the εtot_max merge and rectangle criteria.

3.3. Object Tracking Decision Logic

Each value within the cost function matrix (C) corresponds to a pairing of the jth object (or jth object plus
aggregate objects if split criteria are met) in the t2 image search window and the ith object (or ith object plus
aggregate objects if merge criteria are met) within the search window of the t1 image. The cost function is
analyzed with the goal of determining if the object of interest in the t2 image can be matched with a feature
in the t1 image (with reasonable confidence) or if the object of interest is a new feature. If there are no objects
within the search window of the t1 image, the object of interest is simply classified as a new feature. If there
are potential matching features in the t1 image, then the cost function matrix is used to determine if the
object of interest is a new feature or can be matched with a t1 feature with low or high confidence.

The cost function analysis begins by identifying the t1 feature that minimizes the cost function for the object
of interest (termed the primary match). Next, the t2 feature that minimizes the cost function for the t1 feature
in the primary match is identified and designated as the secondary match. When identifying the primary and
secondary matches, only interobject pairs with a normalized distance (equation (4)) less than or equal to a
threshold value are considered. The normalized distance threshold is determined by counting the number
of possible matches between the object of interest in the t2 image and all features in the t1 image search
window with a normalized distance less than or equal to the following values: 0.01, 0.05, 0.10, 0.15, 0.20,
0.25, 0.30, 0.35, 0.40, 0.45, and 0.50. The threshold is taken to be the minimum value that results in at least
five possible interobject pairings. If less than five interobject pairings were found after assessing all possible
threshold values, a threshold of 0.50 is used. The normalized distance constraint helps prevent interobject
pairs, which are likely not spatially related, from being selected in the event the cloud properties (A and
εtot_max) are very similar.

Utilizing the primary and secondary pairing information, the object of interest is classified in the following
manner. If the primary match is associated with splitting or merging, the primary match is accepted and
deemed to be of high quality. If the primary match is not associated with splitting or merging, the primary
match is accepted, and deemed to be high quality, if the cost associated with the primary match is less than
or equal to the cost function of the secondary match and the cost function of the primary match is less than a
threshold. Otherwise, the primary feature pairing is classified as a low-quality match. The cost function
threshold depends on the time difference (dt) between the interimage features that compose the primary
pairing and whether or not the interimage features spatially overlap. If the interimage features at least
partially overlap (do not overlap), a cost function threshold of 1.25 (1.10), 1.30 (1.18), or 1.35 (1.25) is used
if the dt is <18 min, 18 ≤ dt < 35, or dt ≥ 35, respectively. The cost function thresholds were determined
heuristically via extensive testing of the tracking algorithm using several geostationary satellites with varying
spatial and temporal capabilities. The thresholds with overlap are larger since spatial overlap adds confidence
that the features are correctly paired.
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The 12 June 2011 eruption of Nabro (Global Volcanism Program, 2011) is used to illustrate the object
identification and tracking procedure (Figure 2). In Figure 2, the εtot_max of each object is overlaid on
consecutive SEVIRI 11-μm BT images, with starting times of 20:30 and 20:45 UTC (only a small, magnified,
portion of the full disk image is shown to allow for detailed analysis centered on Nabro). The object εtot_max,
at each time, is assigned to all pixels that comprise a given object. The boundaries of the objects are evident
by the presence of the underlying gray scale 11-μm BT image relative to the colorized εtot_max values. Objects
that were deemed worthy of tracking (see section 3.1) are labeled with a unique identification number. For
clarity, only tracking-worthy objects that are composed of three or more pixels at 20:45 UTC are labeled.
Using the automated tracking procedure, a feature (more than one object if a split was detected) with a given
identification number in the t2 image (Figure 2b) was matched with a feature (more than one object if a
merge was detected) with the same identification number in the t1 image (Figure 2a). Inspection of
Figure 2 reveals that the feature-tracking algorithm generally produces feature pairings that are consistent
with human assessment. Further, Figure 3 (a–d) shows several object tracking parameters overlaid on the
t2 SEVIRI image (20:45 UTC). The object tracking classification flag (Figure 3a) shows that many of the objects
are not tracked due to being classified as thin cirrus, not having any possibility of vertical development, or
being more 200 km from the nearest volcano. The labeled objects in the 20:45 UTC image are generally
matched with features in the 20:30 UTC image with high confidence, including two correctly identified
merges (Features 3 and 5). Given the relatively small time interval (15 min) between the images, most of
the feature pairings spatially overlap (Figure 3b) and have centroids that are closer than alternate object pair-
ings (Figure 3c). The two low confidence pairings (Features 6 and 12) are associated with small transient
objects with large tracking cost function values (Figure 3d).

3.4. Cloud Trends

The volcanic eruption detection algorithm is largely predicated on identifying clouds that exhibit anomalous
vertical growth from one image to the next. Vertical growth, or lack thereof, is assessed using the difference
between the εtot_max of the t2 feature and the corresponding representation of the t2 feature in the t1 image.
The difference between the minimum BT (BTmin) of the t2 feature and the corresponding representation in
the t1 image is also computed. Given that the cloud object tracking methodology is restricted to dt< 60 min,
changes in εtot_max (dεtot) and BTmin (dBT) will largely be associated with changes in cloud height and/or
opacity, as opposed to changes in temperature within a cloud layer with approximately constant
vertical boundaries.

If the t2 feature of interest was confidently traced back to a t1 feature, using the methodology described in
section 3.3, dεtot and dBT are simply computed using the difference between the matching t2 and t1 features,
such that positive (negative) values of dεtot (dBT) generally correspond to vertical growth. If the t2 feature was
classified as a new feature, the t1 εtot_max (BTmin) is given by the maximum (minimum) value within the t1
pixels that correspond to the location of the t2 object (termed the object footprint). In addition, the object
footprint approach is also applied if the t1 and t2 features were matched with low confidence and the
difference between the εtot_max in the t2 feature of interest and the maximum εtot within the search window
of the t1 image is greater than 0.05, which is consistent with a t2 feature that has undergone vertical
development. Given the goal of identifying clouds associated with explosive volcanic eruptions, the object
footprint approach to computing dεtot and dBT is applied to low confidence matches associated with cloud
vertical growth, to ensure an accurate result if the cloud formation is directly linked to volcanic activity (e.g.,
cloud formation centered on a volcanic vent). If the t2 feature of interest has a low confidence t1 pairing and
does not have a εtot_max that is at least 0.05 greater than the εtot_max in the t1 search window, the t1 εtot_max

and BTmin is taken to be the maximum and minimum value, respectively, within the t1 search window.
Figure 3e shows the dBT for the Nabro volcanic cloud and surrounding meteorological clouds. The Nabro
cloud has a dBT of �45.3 K, which is emblematic of very strong vertical growth in the 15-min time window.
None of the surrounding meteorological clouds had a comparable decrease in BTmin.

3.5. Cloud Trend Quality Control

Cirrus clouds can be spatially expansive, fast moving, and/or transient, making them difficult to track. Thus, a
simple quality control procedure is applied with the aim of identifying bad or broken cloud tracks, which are
most common when cirrus cloud elements are being tracked. Unfortunately, not all cirrus can be effectively
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Figure 2. The maximum top of troposphere emissivity (εtot_max) associated with each objectively defined cloud object
is overlaid on gray scale SEVIRI 11-μm brightness temperature imagery from (top) 20:30 and (bottom) 20:45 UTC on
12 June 2011. Interimage cloud object pairings, derived from the automated tracking algorithm, are labeled with a unique
identification number if the cloud object is composed of 3 or more pixels at 20:45 UTC.
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screened out using the method described in Appendix B, but the screening procedure is useful. For each
cloud object that exhibits vertical growth between two successive satellite images, the mean εtot of the
pixels that reside just outside of the object of interest is computed for both images. Outside pixels are

Figure 3. Several cloud object tracking parameters are overlaid on gray scale SEVIRI 11-μm brightness temperature (BT) imagery from 20:45 UTC on 12 June 2011.
The tracking classification (low confidence 1-to-1 match, high confidence 1-to-1 match, high confidence split, high confidence merge, new object, untracked
cirrus, untracked objects due to lack of possible growth, untracked objects due to large distance from nearest volcano, and objects discarded due to failed quality
control) is shown in panel a. The interimage object overlap fraction, distance ratio, and tracking cost function are shown in panels b, c, and d, respectively. The
change in theminimum cloud object 11-μmBT and the vertical growth anomaly are shown in panels e and f. The identification number of each tracked feature is also
shown on each panel.
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defined as those that are not part of the object of interest but are within a rectangular region defined by the
minimum and maximum x and y coordinates of the object of interest at a given time, with an additional 2
pixel buffer applied. The rectangular region within the first image will differ from the second image if the
spatial footprint of the object differs between the two images, which it usually does. The mean εtot of the
outside pixels from the first image is compared to the second image, with the expectation that the εtot of
the pixels immediately surrounding the object of interest will only increase significantly from the first
image to the second if the object track is in error in the presence of a complex and partially transient
object field with large spatial gradients in εtot. Regions with fast-moving and rapidly evolving cirrus, such
as near jet streams, are an example of a highly complex object field. The object tracking fails the quality
control if the mean εtot of the outside pixels increases by 95%, 45%, 25%, or 10%, depending on if the
mean outside pixel εtot of the second image is greater than 0.07, 0.10, 0.30, or 0.50, respectively. The
quality control thresholds were determined heuristically upon extensive analysis of cirrus-related tracking
errors identified through near-real-time processing of several satellite data streams. This simple quality
control procedure was found to eliminate about half of the cirrus-related tracking errors, with limited risk
of filtering out genuine cloud vertical growth.

4. Meteorological Cloud Analysis

In order to detect a wide range of explosion volcanic eruptions, the cloud vertical growth rates must be com-
pared to cloud vertical growth associated with meteorological processes. However, satellite-inferred cloud
vertical growth depends not only on the vigor of the upward motion but also on observational factors.
The primary observational factors are the time interval between the successive images, the area of the satel-
lite pixels, and the initial cloud state. Taking into account the primary observational factors, a database of
cloud vertical growth associated with meteorological processes was generated. The database is composed
of a large volume of data from multiple satellites (see Table 1 for acronym definitions) with significantly vary-
ing spatial resolution and image refresh intervals. The database was constructed to be as geographically and
seasonally complete as possible. The geographic extent is depicted by the geostationary coverage rings in
Figure 4 (the volcano names in Figure 4 are unrelated to the meteorological database component of this
study). The database entries were chosen such that no volcanic ash advisories for clouds above 20,000 feet
(~6 km) were in effect and the Global Volcanism Program (http://volcano.si.edu/) also indicated no high-level
volcanic clouds. The following data sets were chosen for inclusion into the database:

1. GOES-13 Imager (depicted as GOES-East in Figure 4)—One complete day from every month of 2012 (image
interval varies from 5 to 30 min) was utilized. Several days were selected to coincide with intense meteor-
ological convection as indicated by the National Oceanic and Atmospheric Administration (NOAA) Storm
Prediction Center storm report database (http://www.spc.noaa.gov/).

2. MSG-2 SEVIRI full disk—One complete day from every month of 2012 (image interval is 15 min) was uti-
lized. Several days were selected to coincide with intense meteorological convection as indicated by
the European Severe Storms Laboratory storm report database (https://www.essl.org).

3. MSG-1 SEVIRI European mesoscale sector—Four complete days, with convectively active weather, in June
2009 (image interval is 5 min) were chosen.

4. MTSAT-2 Imager—One complete day from each month between January and October 2012 (image
interval varies from 15 to 60 min) was utilized. November and December were excluded due to data
availability issues.

Table 1
The Geostationary Satellite Imaging Radiometers Utilized in This Study

Sensor acronym Acronym meaning

GOES Imager Geostationary Operational Environmental Satellite (GOES) Imager
GOES-R ABI Next Generation Geostationary Operational Environmental Satellite (GOES-R)

Advanced Baseline Imager (ABI)
Himawari-8/Himawari-9 AHI Himawari-8/9 Advanced Himawari Imager (AHI)
MTSAT Imager Multifunctional Transport SATellites (MTSAT) Imager
MSG SEVIRI Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager

Note. Each sensor may be present on multiple spacecraft with different orbital parameters.
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5. Himawari-8 AHI full disk—One complete day from eachmonth between June 2015 andMay 2016 was cho-
sen for the AHI full disk (image interval is 10 min).

6. Himawari-8 AHI Japan region sector—One complete day from each week between 14 April 2016 and 10
June 2016 was chosen for the AHI Japan sector (image interval is 2.5 min).

Histograms of cloud vertical growth were constructed from each meteorological cloud object that exhibited
vertical growth between two successive images. A total of 6,453,781 t2 objects exhibited vertical growth
between two successive images. Many histograms were constructed to account for the time interval among
successive images, the pixel area, and the initial cloud state (characterized by εtot_max at t1). The binning
scheme used to account for the observational factors is given in Table 2. For each growth rate distribution,
the mean and standard deviation were computed. Figure 5 helps illustrate the sensitivity to the time interval
between successive satellite images (dt). For a given pixel area and initial cloud state, the smaller the time
interval between images, the greater constraint on the actual time interval over which the vertical develop-
ment occurred. The time sampling effect results in a narrowing of the dBT distribution as the sampling inter-
val decreases. Thus, a given strong decrease in the BTmin of a cloud object will be increasingly anomalous
with decreasing dt. This suggests that next generation satellites such as Himawari-8 and GOES-R, with more
frequent sampling, are well suited for flagging strong vertical growth anomalies. Most vertically growing
clouds are spatially inhomogeneous, with the BTmin located within a localized core. Thus, the observed
BTmin (and εtot_max) is a strong function of the spatial resolution of the satellite measurements, where the
satellite-inferred vertical extent of the cloud core approaches the true vertical extent as the satellite pixel area
decreases. As the pixel area increases, cumuliform clouds become increasingly spatially uniform from the

Figure 4. The colorized rings illustrate the approximate coverage area of the geostationary satellites utilized in this study.R
elevant volcanoes are also labeled. Satellite acronyms are defined in Table 1.

Table 2
The Binning Scheme Used to Account for the Impact of Observational Factors on Cloud Vertical Growth Rate Calculations

Observational factor Binning scheme Comments

Image interval (min) 7 bins: The binning scheme is designed to account for
many different scan capabilities and strategies.1–4, 4–7, 7–11, 11–18,

18–27, 27–35, >35
Pixel area (km2) 6 bins: The binning scheme accounts for varying pixel

area associated with sensor capabilities and
viewing angle.

4–6, 6–10, 10–20, 20–
30, 30–50, >50

Background conditions (given by the
maximum εtot of the matching object
in the first image of the image pair)

19 bins: This binning scheme accounts for the initial cloud
state (or lack there of) of a cloud object that
exhibits vertical growth between two
successive satellite images.

0.0–0.90 in increments
of 0.05, and a final bin

of >0.90
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satellite perspective, which results in a narrower distribution of dBT, as
shown in Figure 6 (the image time interval and the initial cloud state
are constrained in Figure 6). For a given viewing angle, sensors with
improved spatial resolution, such as Himawari-8 and GOES-R, require
larger decreases in BTmin to produce a given growth anomaly com-
pared to heritage sensors with poorer spatial resolution. The impacts
of the initial cloud state (Figure 7) are a bit more complicated. For a
given image time interval and pixel area, the width of the dBT distri-
bution generally decreases as the initial cloud state becomes increas-
ingly indicative of midlevel and high-level clouds. The exception
occurs when the meteorological cloud evolves from a clear-sky or
low-level cloudy state, characterized by a small εtot_max at t1.The nar-
rower dBT distribution at small values of εtot_max (at t1) is likely a
reflection of the atmosphere not always being favorable for signifi-
cant convection.

The meteorological cloud database, which is function of the dt, pixel
area, and initial cloud state, is used to compute the standardized ver-
tical growth rate anomaly (subtract the mean and divide by the stan-
dard deviation) of cloud objects that exhibit vertical growth between
two successive images. Anomalies are computed for both dBT (the
dBT anomaly is multiplied by �1) and dεtot, and the larger of the
two anomalies is taken. The dBT growth metric ensures that under-
cooled (colder than the tropopause) clouds, often associated with
stratospheric tops, are properly characterized, while the dεtot metric
is better at characterizing growth in atmospheres with a relatively
small tropospheric vertical temperature gradient. Example standar-
dized vertical growth rate anomalies, hereafter referred to as z-scores,
are shown in Figure 3f. The Nabro eruptive cloud has a z-score of
about 8, which is significantly greater than any of the surrounding
meteorological clouds. Many more volcanic eruptions were analyzed,
as described in the next section.

5. Volcanic Eruption Analysis

The CGA method, which automatically identifies, tracks, and characterizes (quantifies cloud vertical growth
relative to a database of meteorological clouds) cloud objects, was applied to more than 70 different explo-
sive volcanic events from 30 volcanoes with comprehensive global sampling (see volcano labels in Figure 4
and Table 3 through Table 6). Results from 12 different geostationary satellites, with varying spatial coverage
and capabilities, ranging from heritage to next generation, were included in the analysis. Prior to analyzing
the results, the performance of the cloud object identification and tracking algorithm was assessed by com-
paring the autogenerated results to a manual analysis of images similar to those shown in Figures 1–3. The
automated algorithm produced cloud vertical growth metrics (dBT and dεtot) that were predominantly con-
sistent with the manual assessment. Disagreements with the manual analysis were found in only 10 cases, as
indicated by table entries with two sets of growth rate anomaly statistics (see Table 3 through Table 6). In 9 of
those 10 cases, the volcanic object of interest was matched with an unrelated meteorological cloud object.
The mismatch errors result in the cloud growth anomaly being underestimated or overestimated, usually
by no more than 40%. As described in the section 6, the practical impact of the mismatch errors is generally
small. Most (eight of nine) of the mismatch errors were associated with legacy satellites with less frequent
imaging, such as GOES-8/GOES-9/GOES-10/GOES-11/GOES-12/GOES-13 and MTSAT-1R/2. For instance, the
growth rate anomaly of the 31 July 2015 eruption of Manam (Papua New Guinea, PNG), as observed in 60-
min intervals by MTSAT-2, was underestimated by 41% due to the volcanic cloud being matched with an
unrelated convective meteorological cloud. Given the 60-min image interval, such an object tracking error,
in a convectively active region, is not surprising. The same eruption was accurately characterized with 10-
min Himawari-8 imagery (see Table 3 through Table 6), which helps illustrate the value of more frequent

Figure 5. Distribution of meteorological cloud vertical growth rates (dBT(11 μm)),
defined as the decrease in the minimum cloud object 11-μm brightness tem-
perature (BT) between two successive images, is shown for measurements taken
at 2.5- (panel a) and 10-min (panel b) intervals. The dashed blue lines denote the 2,
4, 6, 8, and 10 standard deviation anomaly values. These distributions were con-
strained to consist of cloud objects with similar pixel area and initial cloud state.
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imaging. The 4 January 2016 (13:00 UTC) Soputan (Indonesia) case, captured by Himawari-8, was the only
mismatch error associated with next generation satellite capabilities (see Figure 8). The automated tracking
algorithm matched the Soputan cloud (Feature 8 on the right side panels of Figure 8) with a meteorological
cloud west of Soputan in the 12:50 UTC Himawari-8 image. The resulting z-score was 15.9. In contrast, the
z-score was 35.7 if the Soputan cloud is assumed to have grown in place. Animations of Himawari-8 imagery

Figure 6. Same as Figure 5, except that the cloud vertical growth rate distributions are shown as a function of pixel area while constraining the time interval between
successive images and the initial cloud state. Cloud objects with amean pixel area of 4–6, 6–10, 10–20, and 20–30 km2 are shown in panels a, b, c, and d, respectively.

Figure 7. Same as Figure 5, except that the cloud vertical growth rate distributions are shown as a function of the initial cloud state while constraining the time
interval between successive images and the pixel area. Cloud objects with a maximum εtot, at the first image time in an image pair, of 0.00–0.05, 0.50–0.55, 0.70–0.75,
and >0.90 are shown in panels a, b, c, and d, respectively.
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show that the meteorological cloud matched with the Soputan cloud by the automated algorithm may have
advected into the pixels occupied by the Soputan cloud, although this assessment is inconclusive. The
Soputan case, though, does illustrate the potential for false amplification of vertical growth due to cirrus
advection over developing cumulus clouds. The false amplification side effect is, at least partially, mitigated
if the tracking algorithm matches the vertically developing cloud with the correct cirrus cloud in the first
image of the image pair. Nevertheless, the z-score of 15.9, retrieved by the automated algorithm, is suffi-
ciently large to warrant attention, even if underestimated. Thus, from a practical standpoint, the tracking
algorithm correctly highlights the Soputan cloud as a feature of interest, even if the cloud tracking process
was imperfect.

Table 3
A Summary of Cloud Vertical Growth Associated With Explosive Volcanic Events Captured by GOES Satellites

Volcano Country Date mm/dd/yy UTC Time UTC dt min dBT °C dεtot z

GOES-8
Reventador0 Ecuador 11/03/02 12:45 30.0 �28.7 0.31 4.4
GOES-9
Manam0 PNG 10/24/04 01:25 60.0 �59.5 0.53 7.8
Manam0 PNG 01/27/05 14:02 36.3 �59.1 0.53 6.9

�43.4 0.36 5.3
Anatahan0 USA 04/05/05 16:13 48.0 �37.9 0.44 6.1
GOES-10
Chaitén0 Chile 05/02/08 12:28 12.9 �3.9 0.04 �0.1
Chaitén0 Chile 05/02/08 12:45 17.0 �14.8 0.24 4.7
Chaitén1 Chile 05/02/08 15:45 17.1 �39.9 0.49 10.4
Chaitén1 Chile 05/06/08 12:28 13.0 �35.8 0.56 12.9

�41.3 0.68 12.0
Chaitén2 Chile 05/06/08 18:45 17.1 �28.1 0.39 8.9

�22.2 0.32 6.4
Chaitén0 Chile 05/07/08 00:15 17.5 �12.5 0.18 3.5
Chaitén0 Chile 05/07/08 02:45 29.5 �23.2 0.45 4.8
Chaitén0 Chile 05/07/08 20:45 29.5 �20.8 0.32 3.4
Chaitén0 Chile 05/08/08 03:45 17.0 �17.9 0.30 4.8
Galeras0 Colombia 03/13/09 21:15 19.7 �15.8 0.17 1.7
GOES-11
Okmok1 USA 07/12/08 20:00 15.4 �35.0 0.49 17.6
Kasatochi2 USA 08/07/08 22:30 14.2 �22.7 0.29 7.4
Redoubt1 USA 04/04/09 14:15 14.6 �26.8 0.45 16.0
GOES-12
Santa Ana1 El Salvador 10/01/05 14:45 32.0 �67.4 0.70 10.6
Galeras0 Colombia 02/20/09 12:15 27.6 �32.7 0.41 7.0
Puyehue-Cordón2 Caulle Chile 06/04/11 18:28 12.9 �30.4 0.46 8.2

�24.5 0.38 6.0
GOES-13
Soufrière Hills1 Montserrat 02/11/10 17:15 30.0 �64.4 0.61 18.1
Popocatépetl2 Mexico 04/14/12 03:32 14.3 �32.4 0.38 7.9
Nevado del Ruiz1 Colombia 05/29/12 08:15 30.0 �42.5 0.43 5.8

�44.5 0.51 6.2
Tungurahua1 Ecuador 07/14/13 11:45 32.5 �64.6 0.81 23.5
Calbuco1 Chile 04/22/15 21:38 33.8 �60.4 0.84 17.3
Calbuco1 Chile 04/23/15 04:08 30.0 �59.7 0.84 14.5
Wolf1 Ecuador 05/25/15 07:15 30.0 �52.2 0.63 18.8
Cotopaxi1 Ecuador 08/14/15 09:15 27.3 �44.8 0.51 6.2

�49.6 0.62 9.7

Note. In the table heading, dt is the time difference between successive images inminutes, dBT is the change in themini-
mum cloud object 11-μm brightness temperature, dεtot is the change in the maximum cloud object top of troposphere
emissivity, and z is the vertical growth rate anomaly expressed as the number of standard deviations from the mean
(positive indicates vertical growth). Cases where the cloud-tracking algorithm was in error are depicted by the manually
derived cloud growth statistics placed under the original entry.
0Growth rate anomaly did not trigger automated eruption alert. 1Growth rate anomaly did trigger automated
alert. 2Growth rate anomaly triggered automated alert if volcano was classified as active.
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The other major algorithm issue was associated with the 4 December 2015 eruption of Etna (Italy), which pro-
duced a cloud that first became visible in MSG-3 imagery at 9:00 UTC. Manual analysis of the imagery indi-
cated that the 9:00 UTC Etna cloud had a z-score of 6.2. The 9:00 UTC Etna cloud was classified as cirrus in
the preprocessing step of the object tracking algorithm and, hence, was not tracked, and the vertical growth
was not characterized. The cirrus classification, while not practically desirable, is accurate since multispectral
imagery reveals the presence of widespread cirrus clouds above Etna and the surrounding areas. The Etna
cloud initially appeared to develop underneath the cirrus shield. The Etna cloud vertical growth, however,
was effectively computed in the 9:15 UTC MSG-3 image (vertical growth that occurred between the 9:00
and 9:15 UTC images was properly captured). Thus, sometimes, event detection with the GCA method will
be slightly delayed when volcanic clouds, from explosive eruptions, initially develop underneath meteorolo-
gical clouds. As will be discussed in section 6, the cloud object tracking algorithm also does occasionally
result in false vertical growth being detected.

The CGA method is designed to aid in timely eruption detection; it is not intended to be a tool for classifying
eruptions. No effort is made to relate cloud growth anomalies to metrics such as the Volcanic Explosivity
Index (Newhall & Self, 1982), as the cloud growth anomalies are sensitive to nonvolcanic factors such as

Table 4
Same as Table 3, Except for Volcanic Events Captured by the MTSAT Satellites

Volcano Country Date mm/dd/yy UTC Time UTC dt min dBT °C dεtot z

MTSAT-1R
Sarychev Peak1 Russia 06/12/09 01:57 27.0 �39.2 0.56 10.7
Sarychev Peak1 Russia 06/13/09 21:30 33.0 �47.0

�50.2
0.70
0.76

18.7
14.2

Sarychev Peak1 Russia 06/14/09 18:57 27.0 �44.1 0.69 18.3
Sarigan0 USA 05/29/10 12:30 60.0 �56.7 0.51 7.5
Kelut1 Indonesia 02/13/14 16:19 10.0 �53.2 0.28 40.2
Tongariro0 NZ 08/06/12 12:01 29.0 �26.0 0.38 9.8
MTSAT-2
Kelut0 Indonesia 02/13/14 16:32 60.0 �37.0 0.31 6.9
Sangeang Api1 Indonesia 05/30/14 08:32 60.0 �96.2 0.96 25.8
Sheveluch0 Russia 03/25/15 22:32 31.0 �21.0 0.27 3.6
Manam0 PNG 07/31/15 01:32 60.0 �35.6

�65.9
0.27
0.65

6.6
11.2

Table 5
Same as Table 3, Except for Volcanic Events Captured by the MSG Satellites

Volcano Country Date mm/dd/yy UTC Time UTC dt min dBT °C dεtot z

Meteosat-8 (MSG-1)
Karthala2 Comoros 11/24/05 18:15 15.0 �25.6 0.25 6.7
Grímsvötn 1 Iceland 05/21/11 19:19 5.0 �24.6 0.35 21.3
Meteosat-9 (MSG-2)
Soufrière Hills1 Montserrat 02/11/10 17:15 15.0 �52.2 0.45 15.1
Grímsvötn1 Iceland 05/21/11 19:15 15.0 �26.4 0.36 12.7
Nabro1 Eritrea 06/12/11 20:45 15.0 �45.3 0.45 8.1
Meteosat-10 (MSG-3)
Etna1 Italy 11/23/13 09:45 15.0 �24.0 0.42 11.3
Etna2 Italy 11/23/13 10:00 15.0 �30.6 0.43 7.4
Etna2 Italy 12/03/15 02:15 15.0 �17.8 0.29 7.4
Etna1 Italy 12/03/15 02:30 15.0 �41.9 0.60 10.9
Etna0 Italy 12/04/15 09:00 15.0 NA NA NA

�18.9 0.28 6.2
Etna2 Italy 12/04/15 09:15 15.0 �35.5 0.53 8.7
Etna2 Italy 12/04/15 20:45 15.0 �25.4 0.41 6.9
Etna2 Italy 12/05/15 15:00 15.0 �26.8 0.38 6.0

Note. NA indicates that the volcanic cloud was classified as cirrus and not tracked by the automated algorithm.
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the background atmospheric state and the time of the satellite observations relative to the evolution of the
volcanic cloud. The following analysis is designed to illustrate how clouds produced by explosive volcanic
eruptions evolve relative to meteorological clouds and assess the impact of satellite sensor capabilities on
quantifying cloud vertical growth. Figure 9a shows the distribution of z-scores for 79 volcanic clouds pro-
cessed using the CGAmethod. Some eruptions were observed with multiple sensors and/or produced clouds
that grew significantly over more than one image pair (see Table 3 through Table 6). Out of the 79 total cases,
the z-score was found to be 5 or greater in 72 cases and 10 or greater in 22 cases. Thus, volcanic clouds pro-
duced by explosive eruptive events (maximum cloud altitude in the upper troposphere or higher) systema-
tically develop in an anomalous manner compared to meteorological clouds. All of the cases with z-scores of
15 or greater are shown in Figure 9b. The top 15 eruption-related anomalies, shown in Figure 9b, are about
evenly split between tropical and nontropical volcanoes. The sampling is insufficient for determining if tropi-
cal eruptions are more or less likely to produce large anomalies compared to nontropical eruptions.

The analysis reveals that satellite capabilities can have a profound impact on the z-scores, with the CGA
method being more effective when applied to next generation satellites, such as Himawari-8. For instance,
the 25 March 2015 eruption of Sheveluch (Russia) produced a z-score of 10.4 with Himawari-8 10-min ima-
gery, while the same event had a z-score of 3.6 when the growth is derived from MTSAT-2 images taken
31 min apart (see Table 3 through Table 6). The larger Himawari-8 z-score can be mostly attributed to a com-
bination of more frequent imaging (thereby constraining the time period of cloud growth) and the factor of 4
improvement in spatial resolution (more detailed imaging of cloud core). The Himawari-8-derived z-score for
the 31 July 2015 eruption of Manam (PNG) was 10.5, whereas the corresponding MTSAT-2 z-score was 6.6.
The interval between MTSAT-2 images was 60 min, compared to 10 min for Himawari-8. The time interval
between successive satellite images seems to be the most critical measurement attribute that impacts the

Table 6
Same as Table 3, Except for Volcanic Events Captured by the Himawari-8 Satellite

Volcano Country Date mm/dd/yy UTC Time UTC dt min dBT °C dεtot z

Himawari-8
Sheveluch1 Russia 03/25/15 22:10 10.0 �32.0 0.49 10.4
Kuchinoerabujima2 Japan 05/29/15 01:10 10.0 �16.3 0.22 8.6
Manam1 PNG 07/31/15 01:30 10.0 �62.1 0.51 10.5
Soputan1 Indonesia 01/04/16 13:00 10.0 �51.5

�63.7
0.56
0.78

15.9
35.7

Soputan1 Indonesia 01/04/16 22:40 10.0 �20.0 0.30 10.9
Soputan1 Indonesia 01/04/16 22:50 10.0 �36.0 0.42 8.5
Soputan1 Indonesia 01/05/16 06:40 10.0 �39.4 0.43 9.3
Soputan1 Indonesia 01/05/16 15:20 10.0 �23.8 0.35 13.2
Bogoslof2 USA 12/21/16 00:50 10.0 �13.1 0.09 5.2
Bogoslof1 USA 12/22/16 01:30 10.0 �19.3 0.25 11.2
Bogoslof1 USA 12/26/16 23:30 10.0 �31.0 0.36 22.1
Bogoslof0 USA 12/30/16 08:50 10.0 �21.0 0.14 3.9
Bogoslof1 USA 01/04/17 06:30 10.0 �38.4 0.40 25.0
Bogoslof2 USA 01/05/17 22:30 10.0 �13.1 0.12 6.0
Bogoslof2 USA 01/09/17 08:10 10.0 �14.6 0.20 7.7
Bogoslof2 USA 01/18/17 22:30 10.0 �15.3 0.21 9.1
Bogoslof0 USA 01/20/17 22:20 10.0 �6.7 0.08 3.0
Bogoslof0 USA 01/22/17 23:10 10.0 �7.9 0.12 4.3
Bogoslof1 USA 01/24/17 14:00 10.0 �20.9 0.20 11.7
Bogoslof1 USA 01/26/17 16:00 10.0 �20.9 0.24 10.8
Bogoslof2 USA 01/27/17 17:40 10.0 �16.1 0.16 7.0
Bogoslof0 USA 01/31/17 06:50 10.0 �1.9 0.03 0.7
Bogoslof0 USA 02/18/17 00:40 10.0 �10.0 0.08 4.4
Bogoslof1 USA 02/18/17 14:10 10.0 �18.0 0.27 12.2
Bogoslof1 USA 02/20/17 02:20 10.0 �25.5 0.24 14.3
Bogoslof0 USA 03/08/17 08:20 10.0 �12.3 0.07 4.9
Bogoslof0 USA 03/13/17 11:40 10.0 �9.0 0.07 4.7
Sheveluch2 Russia 09/07/17 12:50 2.5 �11.0 0.12 5.2
Sheveluch1 Russia 09/07/17 13:00 10.0 �25.0 0.26 11.3
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CGAmethod. The 2014 Kelut (Indonesia) and 2011 Grímsvötn (Iceland) events illustrate the value of increased
image refresh. The onset of the Kelut eruption was observed by MTSAT-1R at 10-min intervals and by MTSAT-
2 at 60-min intervals. The spatial resolution of MTSAT-1R and MTSAT-2 at Kelut is very similar, and the spectral
bands on each sensor are nearly identical. Thus, time sampling dominates the difference in measurement

Figure 8. (first row) Himawari-8 false color imagery, (second row) 10.4-μm brightness temperature (BT), and (third row) 10.4-μm top of troposphere emissivity (εtot)
are shown for two consecutive image times. The first column is from the 12:50 UTC Himawari-8 AHI scan on 4 January 2016. The second column is from the
13:00 UTC Himawari-8 AHI scan on 4 January 2016. The perimeter of automatically defined cloud objects is overlaid on each image in black, and object tracking
results can be inferred by matching the integer labels from the 12:50 UTC image and the 13:00 UTC image.
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capabilities. When imaged every 60 min with MTSAT-2, the z-score was 6.9. In contrast, the 10-min MTSAT-1R
images resulted in a z-score of 40.2, which is the largest z-score found to date using the CGA method. The
Grímsvötn event was captured by MSG-1 at 5-min intervals and MSG-2 at 15-min intervals. Other than the
difference in the time sampling, the MSG-1 and MSG-2 views of Grímsvötn are very similar. The z-score
associated with the 15-min imagery was 12.7, compared to 21.3 for the 5-min imagery. The Grímsvötn
example illustrates that increased time sampling can have a significant impact, even when images are
already refreshed relatively frequently. It is worth noting that the 2010 Soufrière Hills event produced
similar z-scores when viewed by GOES-13 at 30-min intervals and MSG-2 at 15-min intervals. The similarity
is largely a result of the eruption occurring in a nearly cloud-free environment combined with the volcanic
cloud development being confined to the second half of the GOES-13 30-min sampling interval. Thus, the
impact of time sampling will vary depending on the background conditions and eruption attributes.
However, there is no doubt that more frequent imaging significantly improves the effectiveness of the
CGA method through more accurate cloud tracking and cloud vertical development characterization.

For added perspective, the vertical growth anomalies associated with volcanic eruptions were compared to
known extreme cases of cloud growth unaffiliated with volcanism. Wildfire induced cumulonimbus (pyroCb)
clouds are known to develop rapidly (Fromm et al., 2006, 2010). A notable pyroCb was observed by MSG-2 on
4 August 2010 (http://oiswww.eumetsat.org/WEBOPS/iotm/iotm/20100804_pyrocb/20100804_pyrocb.html).

Figure 9. The distribution of cloud vertical growth rate anomalies, expressed as the number of standard deviations above
the mean growth rate derived from a meteorological cloud data set, is shown in panel a for 79 volcanic cases. The
cumulative frequency (black line) is also shown relative to the y axis on the right. A ranking of the top 15 volcanic vertical
growth rate anomalies (red bars) is shown in panel b, along side growth rate anomalies associated with a supercell
thunderstorm and the development of wildfire-driven convective storm (blue bars).
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The pyroCb was the result of a large wildfire 300 km southeast of Moscow,
during a pronounced Russian heat wave. When the CGA method was
applied to the pyroCb, the maximum z-score, depicted by the blue bar
labeled 17 in Figure 9b, was 4.1. About 80% of the volcanic eruptions ana-
lyzed had a larger z-score. The 2010 eruption of Soufrière Hills was
observed by MSG-2 at roughly the same viewing angle and background
cloud cover as the Russian pyroCb. In contrast, the Soufriere Hills cloud
had a maximum z-score of 15.1. A developing supercell thunderstorm,
which subsequently produced an EF-5 tornado near El Reno, OK, USA, on
24 May 2011 (Bluestein et al., 2015), was also analyzed. The GOES-13 satel-
lite captured the early development of the El Reno storm at 7–10-min ima-
ging intervals. The maximum observed z-score, which is shown in
Figure 9b, was 11. While only about 27% of the volcanic eruptions
analyzed have a larger z-score (Figure 9a), the El Reno storm was an
extreme outlier compared to the typical supercell (Cintineo et al., 2013).
Supercells of such intensity are fortunately rare, and the favored locations
for supercell development (large plains) are generally in volcanically inac-
tive regions. Thus, from a practical perspective, supercell development is
not a common source of ambiguity for volcanic eruption identification
using the CGA method. Automated eruption detection and false alarm
sources are discussed in detail in the next section.

6. Alerting Tool

In order to be useful for automated alerting, the CGA method must not
only be capable of reliably detecting explosive volcanic events, with
clouds that reach the upper troposphere or higher, but must do so with
a manageable number of false alarms. The CGA method is not designed
to detect all volcanic eruptions, so ideally, it should be combined with
complementary detection methods (e.g., Brenot et al., 2014; Pavolonis
et al., 2015a, 2015b), which is a topic of future research. In order to gener-
ate volcanic cloud alerts from the CGA products, thresholds must be used

to select vertically growing cloud objects of interest that are in close proximity to known volcanic vents. The
selection thresholds are given in Table 7. The selection thresholds were determined heuristically using the
previously analyzed 79 volcanic events and results from continuous near-real-time processing that com-
menced in 2013. In order to account for increases in cloud tracking uncertainty as the time between succes-
sive satellite images increases, the selection criteria are a function of the time interval between images. The
selection criteria also place greater weight on cloud objects that are closer to volcanic vents after a parallax
correction has been applied. A combination of dBT and the z-score is used to ensure that the computed
anomalies are truly associated with noteworthy vertical growth. Finally, less stringent selection thresholds
can optionally be applied to cloud objects that are near volcanoes with known ongoing activity. For real-time
application of the CGA, a list of currently active volcanoes, as given by the Global Volcanism Program,
is maintained.

The CGA algorithm and CGA-based eruption alerting capability are part of the VOLcanic Cloud Analysis
Toolkit (VOLCAT). VOLCAT is a collection of software developed by the NOAA, in partnership with the
University of Wisconsin-Madison. In addition to the CGA algorithm, VOLCAT includes the volcanic cloud-
related algorithms described in Pavolonis et al. (2013, 2015a, 2015b). Example CGA-based alerts from
VOLCAT are shown in Figure 10. The alerts are in the form of a hyperlink, distributable via e-mail or Short
Message Service. The hyperlink points to a web-based alert report that includes information on the cloud
growth anomaly, a list of most likely source volcanoes, and relevant satellite imagery. Satellite imagery,
including links to animations, is included to aid in alert interpretation. The example alerts shown in
Figure 10, which were generated in an unsupervised near-real-time manner, capture the very early evolution
of clouds produced by events at Sheveluch (Russia) and Ambae (Vanuatu). Both alerts were based on 10-min

Table 7
Criteria Used to Identify Potential Volcanic Eruptions From Cloud
Vertical Growth

dt (min) dBT (°C) z r (km) Rεtot

65 �80 25 75 NA
65 �70 10 75 0.01
65 �50 10 25 0.90
35 �45 10 25 0.01
35 �35 10 25 0.20
35 �40 5 25 0.75
18 �45 2 25 0.01
18 �35 10 25 0.10
18 �25 10 25 0.25
18 �20 10 25 0.50
18 �15 5 25 0.01*
18 �15 5 10 NA*
11 �30 8 25 0.01
11 �15 10 25 0.01
11 �10 5 25 0.01*
11 �10 5 10 NA*
6 �20 8 25 0.01
6 �10 10 25 0.01

Note. In the table heading, dt is the time difference between successive
images in minutes, dBT is the change in the minimum cloud object 11-μ
mbrightness temperature, z is the vertical growth rate anomaly expressed
as the number of standard deviations from the mean (positive indicates
vertical growth), r is the distance between the radiative center (location
of maximum object εtot) of the cloud and a volcano of interest, and
Rεtot is the difference between the maximum εtot in the cloud object
and the closest object pixel to the volcano of interest (the difference is
divided by the maximum object εtot). A less than test is applied to dt,
dBT, and r. A greater than test is applied to the other fields. Only one set
(each row is a set) of criteria needs to be true to generate an alert.
NA: Rεtot threshold is not applied.
*Criteria that are only applied to volcanoes known to be in a state of
unrest.
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Himawari-8 data. The VOLCAT alerts are currently distributed to expert users at Volcanic Ash Advisory Centers
and Volcano Observatories in an experimental manner.

To gain insight into the typical performance of the alerting system, all CGA-based VOLCAT alerts were manu-
ally analyzed for a 32-day period from 6 October to 6 November 2017. During that period, eight confirmed
CGA alerts were generated for events at Popocatépetl (Mexico), Sheveluch (Russia), and Ambae (Vanuatu).
The two Popocatépetl events (7 October at 16:27 UTC and 4 November at 20:47 UTC) were detected using
preliminary nonoperational GOES-16 data with 5-min image refresh. GOES-16, which was launched on 19
November 2016, is the first satellite in the GOES-R series. NOAA declared GOES-16 to be operational on 17
December 2017. According to the Washington Volcanic Ash Advisory Center (VAAC), the 7 October
Popocatépetl cloud extended to 30,000 ft (9.1 km) and the 4 November cloud reached 25,000 ft (7.6 km).
In addition, two Sheveluch events were detected using 10-min Himawari-8 data. The advisories, issued by
the Tokyo VAAC, indicate that the cloud detected on 10 October (23:40 UTC) reached 30,000 ft (9.1 km)

Figure 10. Example volcanic cloud alerts that were automatically generated in near real time on (top) 11 November 2017 and (bottom) 29 October 2017 are shown.
The alert in the top panel captured an eruption of Sheveluch (Russia) and the bottom panel captured an eruption of Ambae (Vanuatu). Both eruptions were
detected in a timely manner using Himawari-8 satellite data and the cloud growth anomaly detection algorithm.
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and the cloud detected on 2 November (05:10 UTC) had a maximum height of 26,200 ft (8.0 km). Finally, four
Ambae events were detected using the CGAmethod and 10-min Himawari-8 data: 13 October (07:00 UTC), 13
October (22:00 UTC), 22 October (3:10 UTC), and 29 October (04:00 UTC). The Wellington VAAC indicated that
the 13 October Ambae clouds went up to 30,000 ft (9.1 km), the 22 October event generated a 12,000 ft
(3.7 km) plume, and the 29 October cloud had a maximum height of 20,000 ft (6.1 km). The eight confirmed
CGA alerts in the 6 October to 6 November 2017 timeframe captured the eruptive clouds in the very early
stages of development—prior to exhibiting robust spectral signatures associated with the presence of ash
and/or SO2. The z-scores of the confirmed alerts ranged from 6.3 for the 4 November Popocatépetl case to
18.4 for the 10 October Sheveluch case. The typical latency of the alerts varies from 5 min (GOES-16) to
26 min (Himawari-8), depending on the sensor. Most of the latency is due to satellite data acquisition, not
algorithm processing.

Based on the Global Volcanism Program weekly reports and VAAC advisories, one volcanic cloud that
reached 30,000 ft was missed by the CGA method in the 6 October to 6 November 2017 period. The 20
October 2017 (19:20 UTC) event at Tinakula (Solomon Islands; Global Volcanism Program, 2017) went
undetected by VOLCAT because the cloud tracking failed the quality control test described in section 3.5.
Of all of the events analyzed, including through near-real-time processing, this is the only known explosive
event that was missed due to the quality control procedure. While some improvements are certainly possible,
the CGA logic has been shown to be consistently effective at detecting volcanic clouds that reach the upper
troposphere and beyond. Some lower level eruptions are also captured. Beyond the examples presented in
this paper, many other confirmed alerts have been generated in near real time by VOLCAT over the last
several years. A more comprehensive review and validation of the VOLCAT alerting capability is the subject
of ongoing research.

As stated earlier, the CGA-based alerting tool does generate some false alerts. Figure 11 shows the number of
false alerts per day during the 6 October to 6 November 2017 period as a function of satellite and VAAC
region of responsibility (http://gis.icao.int/VOLCANO2014/). In this analysis, an alert is taken to be false if no
volcanic ash advisory, consistent with the detected cloud, was issued. This is reasonable since volcanic ash
advisories are based on several sources of information, including volcano observatories. While not always
detected in the early stages (hence the motivation for an automated alerting capability), explosive events
(hopefully) rarely go completely undetected. Further, our manual examination of the satellite imagery,
associated with the false alerts, did not give reason to doubt the false alert classification. Figure 11 shows that
the CGA method produces zero to eight false alerts per day, when the results from the GOES-13, GOES-15,
MSG-3, and Himawari-8 satellites are aggregated. The combination of GOES-13, GOES-15, MSG-3, and
Himawari-8 provides near-global geographic coverage. In the median, three false alerts are generated each
day. For additional context, the total number of cloud objects, tracked between consecutive satellite images,
each day, is shown in Figure 11. The subset of those cloud objects, which exhibited behavior consistent with
vertical growth, is also displayed in Figure 11. Approximately 1.3–1.6 million cloud objects are analyzed for
vertical growth each day, with about 500,000 having a decrease (increase) in BTmin(εtot_max) from one image
to the next, consistent with vertical growth. Thus, themedian false alert rate is quite small (approximately two
false alerts for everymillion cloud objects analyzed or less than 1 out of every 100,000 objects exhibiting signs
of vertical growth). The Himawari-8 satellite produces the greatest number of false alerts because the data
volume is much larger than the other satellites. When satellite-specific object counts are accounted for, the
performance (false alert rate) of each sensor is comparable. The number of false alerts per VAAC region is a
function of the satellite coverage and the geographic extent of the VAAC region. The Tokyo VAAC region,
which is imaged by Himawari-8, has the greatest number of false alerts (total of 26). In the worst case, the
32-day total of 26 alerts in the Tokyo VAAC region equates to less than one per day. Thus, the number of false
alerts is manageable. The GOES-16 satellite is not included in the false alert analysis since it was not yet
operational during the selected analysis period. However, early indications are that the false alert rate is
comparable to, or perhaps lower than, Himawari-8. The GOES-16 results will be reported in a future paper.

Each false alert in the 6 October to 6 November 2017 period was examined in detail. While it is occasionally
difficult to completely rule out eruptive processes, as an influence on cloud development, from examination
of the satellite data alone, human expert interrogation of satellite image sequences is usually effective for
classifying CGA based alerts. Human experts can readily identify false growth due to tracking errors or
measurement artifacts. In addition, human experts can often distinguish between volcanic and
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nonvolcanic cloud development by noting nuances associated with cloud origin and development (such as
consistency with meteorological conditions) that are more difficult to characterize with computer algorithms.
The manual analysis of false alerts indicated that about 60% of the false alerts can be attributed to cloud
tracking errors, with the other 40% representative of actual changes in cloud object properties. Not
surprisingly, the majority of tracking errors were associated with complex, fast-moving, high-level clouds.
In addition, even when clouds are correctly tracked, the change in BTmin and εtot_max is sometimes due to
advection over a colder background as opposed to actual vertical development. Fortunately, human
experts can often identify the advection effect using the satellite imagery provided with the alerts. Future
improvements will focus on reducing the number of false alerts as much as possible.

7. Conclusions

A unique new geostationary satellite algorithm for automatically detecting emergent volcanic clouds, pro-
duced by explosive events, was described and demonstrated. The algorithm, referred to as the Cloud
Growth Anomaly (CGA) method, identifies cloud objects that exhibit anomalous vertical growth between
two successive geostationary satellite images, compared to meteorological clouds. While the CGA technique
can be applied to any geostationary satellite sensor, as long as the image refresh time does not exceed

Figure 11. The number of alerts from 6 October to 6 November 2017, not associated with known volcanic activity, is shown
as a function of (top) satellite and (bottom) Volcanic Ash Advisory Center (VAAC) region. The total number of image-to-
image cloud object tendencies that were analyzed (black sold line) and the subset of those tendencies exhibiting behavior
that is consistent with vertical growth between two successive satellite images (gray solid line) are also shown on each
panel relative to the right y axis, with units of millions.
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60 min, it is most effective when applied to latest generation of meteorological satellites such as Himawari-8
and GOES-16, which provide more frequent images with improved spatial resolution. The CGA method adds
considerable value to the volcanic cloud detection problem because it does not rely on unique spectral sig-
natures caused by differential extinction of radiation due to the presence of ash and/or SO2. Unique spectral
signatures are often absent or difficult to conclusively identify in emergent volcanic clouds because of cloud
opacity effects and/or the presence of hydrometeors (mainly ice).

The CGA method was used to show that the very early development of volcanic clouds, produced by a large
and diverse sampling of explosive events, is characterized by anomalous vertical growth, thereby allowing
thresholds for automated volcanic cloud detection to be set. The automated detection capability is used
within a volcanic eruption alerting system (VOLCAT), which has been running in near real time since 2013.
The CGA-based alerts, which are experimentally distributed to several Volcanic Ash Advisory Centers, have
detected numerous eruptions, while resulting in less than one false alert per VAAC region, per day, on aver-
age. Volcanic cloud alerts are an important supplement to routine human expert analysis of satellite imagery,
as rapidly increasing satellite data volumes do not allow for detailed manual analysis of every satellite image
relevant to volcanic cloud detection. While the CGA method is not designed to detect all volcanic clouds, it
can be combined with other detection techniques (e.g., Brenot et al., 2014; Pavolonis et al., 2015a, 2015b) to
provide more complete, timely, detection of eruptive events, which is critical for aviation safety. Possible
enhancements to the CGA algorithm include incorporation of localized trends in meteorological convection
and satellite-inferred surface temperature trends near volcanic vents (e.g., Wright et al., 2004).

The CGA method has several potential uses beyond eruption alerting. Pouget et al. (2013) showed that time
trends in certain spatial properties (e.g., cloud area) of volcanic umbrella clouds and vigorous volcanic plumes
can be used to estimate mass eruption rate, which is a crucial eruption source parameter required by
dispersion and transport models (Mastin et al., 2009). The CGA algorithm, in combination with other
automated feature tracking methods, can be used to determine the cloud properties required to estimate
mass eruption rate over time. While the cloud tracking technique employed with the CGA algorithm is not
designed for birth-to-dissipation volcanic cloud tracking, it is important for the initial detection required
for performing such long-term automated tracking. Combining the CGA volcanic cloud detection capability
with techniques better suited for middle and late life cycle tracking is the subject of ongoing research. In
addition to determining eruption source parameters, automated volcanic cloud tracking is important for
other modeling applications, such as supporting systematic verification and alternate methods of model
initialization (e.g., Crawford et al., 2016). Finally, integrating satellite algorithms, like the CGA, with other
measurement capabilities, including lightning detection, volcanic infrasound, and seismic monitoring (Fee
&Matoza, 2013; Schneider et al., 2017; Van Eaton et al., 2016), is critical for improving volcanic cloud detection
and characterization, as no single-measurement source completely captures all aspects of volcanic cloud
formation and evolution.

Appendix A: Cloud Object Tracking Search Box

In order to efficiently determine if a given cloud object at time t = t2 (hereafter referred to as the object of
interest) is present in the t = t1 image, a search box is defined in image coordinates. The starting and ending
pixel coordinates of the search box (X0, X1, Y0, and Y1) is a function of the difference between the two

successive satellite images (Δt), the mean horizontal dimension of the satellite pixels (L), the minimum and
maximum x and y image coordinates of the object of interest (Xmin, Xmax, Ymin, and Ymax), and an assumed
wind speed (|V|). Thus, for a given pixel resolution, the size of the search box, in image coordinates, increases
as a function of the time difference. The wind speed (|V|) is taken to be 100 m/s for objects with at least one
cirrus-like pixel (see Appendix B) and 50m/s otherwise. Equations (A1) through (A4) illustrate how the starting
and ending pixel coordinates of the search box are computed for the x coordinate (scan line elements). The
starting and ending y coordinate (scan lines) are computed in an analogous manner. In equation (A1), Δp is
the number of pixels (rounded to the nearest integer), along the x or y direction, that a cloud feature will be
displaced by the assumed wind speed. In equation (A4), Nx is the maximum valid index. No assumptions are
made regarding the wind direction, as the box accounts for movement in any direction. The search box is
generally larger than needed and need not be precise since it is only used to improve the computational
efficiency of the cloud object tracking algorithm.
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Δp ¼ Vj jΔt
L

(A1)

Δx ¼ Δp� Xmax � Xmin þ 1ð Þ (A2)

X0 ¼ max 1; Xmin � Δxð Þ (A3)

X1 ¼ min Nx ; Xmax þ Δxð Þ (A4)

Appendix B: Identification of Thin Cirrus Clouds

Optically thin cloud regions, within cirrus shields, are difficult to track because they are often spatially
expansive, fast-moving, and/or transient. As such, a screening procedure is applied to limit the number of
thin cirrus cloud elements that are tracked. The cirrus screening procedure improves the computational
efficiency of the tracking routine and reduces the number of false cloud vertical growth signatures due to
object tracking error.

As described in Pavolonis (2010), Numerical Weather Prediction (NWP) model data and a fast radiative trans-
fer model are used to simulate top of atmosphere infrared radiances under a variety of conditions. The NWP
level where the emission from a simulated blackbody cloud and overlying clear atmosphere matches the
observed radiance in a given channel can be readily determined. The highest tropospheric level, where
the blackbody cloud assumption matches the observed radiance, is found for an infrared window and water
vapor absorption channel. Every geostationary meteorological satellite has such spectral channels. Due to the
absorption by water vapor, the atmospheric weighting function of a channel in the 6–7-μm region will peak
at much higher altitudes than a channel in the 10–12-μm window region, where absorption by water vapor
and other atmospheric gases is weaker. As such, for nonopaque clouds, the altitude at which the blackbody
cloud assumption matches the observed radiance will be higher when computed using the water vapor
absorption channel compared to an infrared window channel. Another way to capture the difference in
altitude is through the NWP temperature associated with the simulated blackbody cloud level. When
optically thin cirrus clouds are present, the difference in the temperature of the simulated infrared window
and water vapor absorption channel blackbody clouds will be large, whereas the temperature difference will
approach zero when an actual opaque cloud is actually present. This blackbody cloud differencing technique is
analogous to simply taking the difference in the measured brightness temperature between an infrared
window and water vapor absorption channel but is less sensitive to viewing angle and the channel spectral
response functions, making application of a single threshold more effective. A heuristically determined
threshold of 10 K is applied (e.g., >10 K implies that thin cirrus is present). Water vapor channels centered
near 6.7–6.9 μm are utilized for all sensors, except MSG SEVIRI, where the water vapor channel utilized is
centered near 6.2 μm (MSG SEVIRI does not have a channel 6.7–6.9-μm channel). The infrared window
channel utilized is centered near 10–11.5 μm. On sensors with two channels in this region, the channel with
a center wavelength closer to 10 μm is utilized. In addition to the 10-K threshold, the window channel cloud
emissivity referenced to the top of the troposphere (εtot) must also be less than 0.75. All cloud objects where
more than 50% of the pixels meet the thin cirrus criteria at t2 (the second satellite image in the image pair
used by the tracking algorithm) are flagged as thin cirrus and are not tracked.
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